# Zero-shot Event Detection using a Textual Entailment Model as an Enhanced Annotator

Ziqian Zeng, Runyu Wu, Yuxiang Xiao, Xiaoda Zhong, Hanlin Wang, Zhengdong Lu and Huiping Zhuang

South China University of Technology



PAGE 1

# Topic: Event Detection (ED)

#### **Event Extraction**

aims at extracting such event information from **unstructured plain texts** into a **structured form**, which mostly describes "who, when, where, what, why" and "how" of real-world events that happened.

#### Event type: TRANSFER-OWNERSHIP

China has purchased two nuclear submarinesfrom Russia last month.Buyer-ArgTriggerArtifact-ArgSeller-ArgSeller-ArgTime-Arg

Typically, an event in a text is expressed by the following components:

- Event type
- Event trigger
- Event argument
- Argument role: the relationship between an argument and the event in which it participates.

Buyer, Seller, Time, and Artifact are roles of arguments that are specific for the transfer ownership event type.

#### The goal of **Event Detection (ED)** is to **detect the occurrences of events and categorize them**.

PAGE 2

# Topic: Textual Entailment

#### Textual Entailment Task:

to identify the **directional relation** between text pairs.

|            | ID        | sentence                                                              | label         |
|------------|-----------|-----------------------------------------------------------------------|---------------|
| Premise    |           | A dog jumping for a Frisbee in the snow.                              |               |
|            | Example 1 | An animal is outside in the cold weather, playing with a plastic toy. | entailment    |
| Hypothesis | Example 2 | A cat washed his face and whiskers with his front paw.                | contradiction |
|            | Example 3 | A pet is enjoying a game of fetch with his owner.                     | neutral       |

## Problems & Our Work

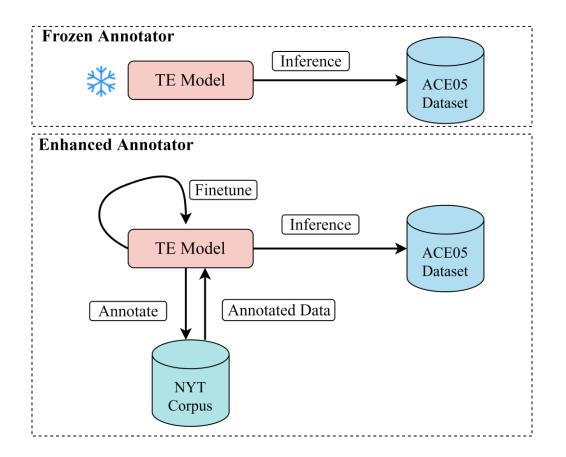
- Problems of previous works:
  - ED methods are mostly accomplished in a supervised manner which requires a large number of annotated data.
  - The aforementioned methods treat the TE model as a frozen annotator which is used solely for inference on the test set.

## Problems & Our Work

#### • Our Work:

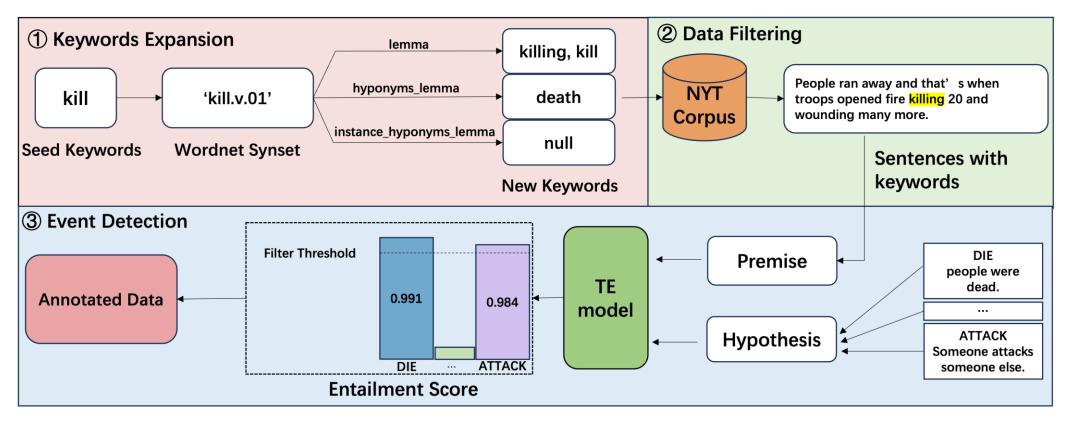
- We turn the TE model into an enhanced annotator by utilizing it to annotate massive amounts of unlabeled data and subsequently finetune it.
- To improve the efficiency, we propose to use keywords to filter out sentences with a low probability of expressing events.
- To improve the coverage of keywords, we expand the limited number of seed keywords using WordNet.
- The experimental results show that our method can outperform other baselines by 15% on the ACE05 dataset.

#### Problems & Our Work



**Figure 1.** The illustration of the difference between a textual entailment model as a frozen annotator and an enhanced annotator

#### Data Annotation



**Figure 2.** The general workflow of using a pre-trained TE model and keyword expansion to annotate unlabeled data.

# TE Model Finetuning

- For the event detection task, we use the annotated NYT data to finetune the TE model.
- In case triggers are needed in downstream tasks, we also propose a method to identify triggers given detected event types as inputs. We finetune the BERT (Devlin et al., 2018) model using the annotated NYT data via prompt tuning.
- If a sentence does not express any event, we let the trigger classification model to predict "no trigger." We propose two data augmentation methods to generate "no trigger" data.

| Example 1                       |                                |
|---------------------------------|--------------------------------|
| Sometimes with the commi        | ssion meeting in full session. |
| Event type: NOT MENTIONED       | Trigger: no trigger            |
| After augmentation              |                                |
| Event type: Conflict:Attack     | Trigger: no trigger            |
|                                 |                                |
| Example 2                       |                                |
| But it's even worse to be an    | rested for doing so.           |
| Event type: Justice:Arrest-Jail | Trigger: arrested              |
| After augmentation              |                                |
|                                 | Trigger: no trigger            |

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

PAGE 8

## Experiments

- Experimental Settings
  - Datasets
  - Compared Methods
- Experiment Results
  - Event Detection Results
  - Trigger Classification Results
  - Low-resource Analysis
  - Hyperparameter Analysis

#### Datasets

1. ACE05-E+ (Lin et al., 2020) dataset is a widely used dataset for the event extraction task, which predefines 8 event types and 33 subtypes.

| Splits    | Train  | Dev | Test |
|-----------|--------|-----|------|
| Sentences | 19,240 | 902 | 676  |
| Events    | 4,419  | 468 | 424  |

| Table 1: Statistics of AC | E05-E+ Dataset. |
|---------------------------|-----------------|
|---------------------------|-----------------|

Annotated NYT Data We extract sentences that contain keywords in the New York Times (NYT) corpus (Sandhaus, 2008). Finally, we collected 322,570 data, including 268,406 single-event data and 54,164 multi-event data. The single-event (multi-event) data express one (more than one) event within a sentence

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020. A joint neural model for information extraction with global features. In Proceedings of ACL, pages 7999–8009. Evan Sandhaus. 2008. The new york times annotated corpus. Linguistic Data Consortium, Philadelphia, 6(12):e26752.

# **Compared Methods**

#### Zero-shot event detection baseline methods:

- Liberal\_EE (Huang et al., 2016)
- ZS4IE (Sainz et al.,2022),
- ZS\_Transfer (Lyu et al., 2021)
- ZS\_CLEVE (Wang et al., 2021)
- Label\_Aware (Zhang et al., 2021)
- Chat4ED (Li et al., 2023)

Upper-bound supervised methods:

- CLEVE
- OneIE (Lin et al., 2020)
- TBNNAM (Liu et al., 2019)

## Experiments

- Experimental Settings
  - Datasets
  - Compared Methods

#### • Experiment Results

- Event Detection Results
- Trigger Classification Results
- Low-resource Analysis
- Hyperparameter Analysis

#### **Event Detection Results**

Our method outperforms the baseline ZS\_CLEVE by 15%. Our method can achieve **86%** performance of the upper-bound supervised CLEVE. Without using expanded keywords, our method drops **3%**, which shows the **effectiveness of the keyword expansion** strategy.

Furthermore, the combination of single-event and multievent data yields the best F1 score.

| Methods                          | P           | R           | F1                 |
|----------------------------------|-------------|-------------|--------------------|
| CLEVE (Wang et al., 2021)        | 78.1        | 81.5        | 79.8               |
| OneIE (Lin et al., 2020)         | 74.3        | 70.3        | 72.2               |
| TBNNAM (Liu et al., 2019)        | 76.2        | 64.5        | 69.9               |
| Liberal_ EE (Huang et al., 2016) | 55.7        | 45.1        | 49.8               |
| ZS4IE (Sainz et al., 2022)       | 32.0        | 52.9        | 39.9               |
| ZS_Transfer (Lyu et al., 2021)   | 31.7        | 60.6        | 41.7               |
| ZS_CLEVE (Wang et al., 2021)     | 62.0        | 47.3        | 53.7               |
| Label_Aware (Zhang et al., 2021) | 54.1        | 53.1        | 53.6               |
| Chat4ED (Li et al., 2023)        | 9.4         | 44.3        | 15.5               |
| <b>ZS_TE</b> (our method)        | <b>65.6</b> | 72.3        | <b>68.8</b> ±0.003 |
| w/o keyword expansion            | 54.0        | <b>83.6</b> | <b>65.6</b> ±0.006 |

Table 2: Precision, recall, and F1 scores (%) in the event detection task.

| Data Combinations | P           | R    | F1                 |
|-------------------|-------------|------|--------------------|
| Single            | 58.0        | 94.5 | <b>65.3</b> ±0.018 |
| Multi             | 37.3        |      | <b>53.5</b> ±0.012 |
| Single + Multi    | <b>65.6</b> |      | <b>68.8</b> ±0.003 |

Table 3: Precision, recall, and F1 scores (%) of our methods in the event detection task using different data combinations.

# Trigger Classification Results

The trigger classification result drops 9%. The possible reason is that BERT model may not be proficient in identifying and classifying words.

| ZS_TE (our method)     | P    | R    | F1         |
|------------------------|------|------|------------|
| Event Detection        | 65.6 | 72.3 | 68.8±0.003 |
| Trigger Classification | 66.9 | 54.1 | 59.8±0.002 |

Table 4: Precision, recall, and F1 scores (%) in the event detection and trigger classification task.

#### Low-resource Analysis

- We evaluate our method and two supervised methods on a low-resource setting in which we use 10%~50% ACE data for training.
- Our method consistently outperforms TBNNAM(Liu et al., 2019) by a large margin indifferent proportions.

Note that OneIE used trigger-level an notations while our method and TBNNAM do not use them. Direct comparison between OneIE and trigger-free methods is not fair. OneIE here serves as a reference rather than a baseline.

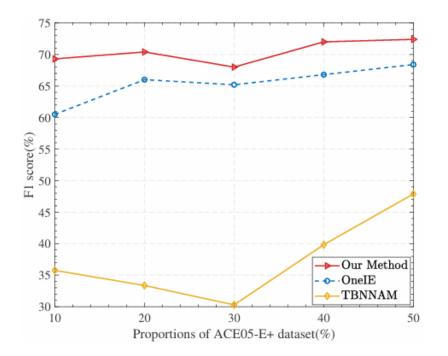


Figure 4: F1 scores (%) of our method and OneIE in the event detection task in different low-resource settings.

# Hyperparameter Analysis

- The search range of confidence threshold  $\gamma$  is  $\{0.5, \dots, 0.9\}$ . As shown in Figure, 0.9 yields the best performance and stability among all threshold values.
- When the confidence threshold  $\gamma$  is larger, the performance is better because a high confidence threshold  $\gamma$  can rule out more wrong event types.

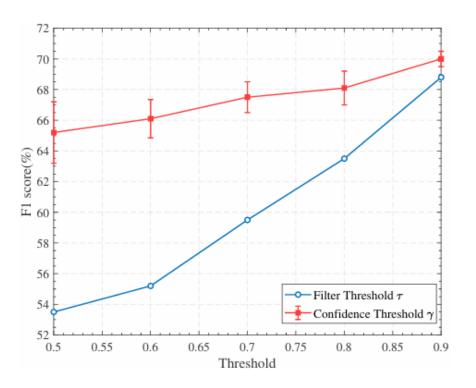


Figure 5: F1 scores (%) in the event detection task under different filter threshold  $\tau$  and confidence threshold  $\gamma$ .

**LREC-COLING 2024** 

# THANKS

Speaker: Yuxiang Xiao South China University of Technology