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1 Feature detection  

Harris' corner detector takes the differential of the corner score into account with 

reference to direction directly.  

To identify the points of interest, a window of pixels around each point should be 

considered. Compute the Harris matrix H for (the window around) around every point, 

defined as 

 

After obtaining the Harris matrix, we calculate the response of detector at each 

pixel depending on it. 

 

A threshold is determined by the maximum value multiply a ratio value. 

  

 Finally, we compute the nonmax suppression. Select the domain space. if the 

neighborhood space distance is less than min, only one corner point is selected. 

1.1 Harris Matrix 

In matrix operation, we do not directly calculate the Harris Matrix by defining a 

window around every point. In the convolution operation, we implement this operation 

by defining a convolution kernel with the size 3*3.The calculation to get the Harris 

matrix could be divided into following steps. 

1. Compute x and y derivatives of images 

  

2. Compute products of derivatives at every pixel 

  

3. Compute the sums of the products of derivatives at each pixel 

  

4. Define at each pixel(x,y) the matrix 
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# Return the partial derivatives in x and y 

filters.gaussian_filter(self.img, ksize, (0, 1), gradient_imx) 

filters.gaussian_filter(self.img, ksize, (1, 0), gradient_imy) 

# Caculate the elements in Harris Matrix 

Sx = cv2.GaussianBlur(gradient_imx * gradient_imx, ksize, sigmaX=0, sig

maY=0) 

Sy = cv2.GaussianBlur(gradient_imy * gradient_imy, ksize, sigmaX=0, sig

maY=0) 

Sxy = cv2.GaussianBlur(gradient_imx * gradient_imy, ksize, sigmaX=0, si

gmaY=0) 

 

1.2 The response of the detector at each pixel 

  

  

is an empirically determined constant; . is set to 0.04 in this 

project. Set the threshold by the response. 

det = Hx * Hy - Hxy ** 2 

trace = Hx + Hy 

alpha = 0.04 

# Get the corner response 

resp = det - alpha * np.square(trace) 

threshold = ratio * resp.max() 

Selecting the points above the threshold. If the intensity of pixel is smaller than 

threshold, we set it to zero. Then get the coordinates of the non-zero point. 

# Set the intensity of non-target points to zero 

threshold_img = (threshold_img > threshold) * 1 

# Get the coordinates of keypoints 

coords = np.array(threshold_img.nonzero()).T 

candidate_values = [self.img[c[0], c[1]] for c in coords] 

index = argsort(candidate_values) 

1.3 Non-max suppression 

If the intensity of pixel point is less than the threshold, or it’s not the maximum 
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around a 3*3 window, it’s could not be selected as the point of interests. 

neighbor = zeros(self.img.shape) 

neighbor[min:-min, min:-min] = 1 

filtered_coords = [] 

for i in index: 

     if neighbor[coords[i, 0], coords[i, 1]] == 1: 

        filtered_coords.append(coords[i]) 

        neighbor[(coords[i, 0] - min):(coords[i, 0] + min), 

        (coords[i, 1] - min):(coords[i, 1] + min)] = 0 

2 Feature description  

   In the last step, we have obtained the coordinates of interest points through the 

HarrisKeypointDetector, next we will implement two descriptors for the feature 

centered at each interest point. To implement this work, we define a class named 

FeatureDescriptor which includes three functions. The simplified structure of code for 

feature description is as follows. 

class FeatureDescriptor: 

    def __init__(self, image, keypoints): 

        self.img = image 

        self.keypoints = keypoints 

    def rotation_angles(self): 

        return angles 

    def SimpleFeatureDescriptor(self): 

        return features 

    def Simp_MOPS(self, angles): 

        return features 

2.1 Simple descriptor 

  This is a simple method to describe the features around each interest point.Before the 

formal work, we should pad the picture by zero to eliminate the affect caused by the 

boundary. 

img = np.pad(img, [(2, 2), (2, 2)], mode='constant')  # zero padding 

we simply extract a 5*5 window around each interest point which contains the pixel 

intensity values as the simple descriptor. To implement this work, we define a function 

named SimpleFeatureDescriptor. 

def SimpleFeatureDescriptor(self): 
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  The output of this function is a three-dimensional list containing all 5*5 windows. 

 

2.2 MOPS 

MOPS (Multi-Scales Oriented Patches) is a more complicated descriptor. The critical 

process of MOPS includes prefiltering, rotating and normalizing. In order to achieve 

these process, we should first calculate the angles of rotating. We define a function to 

implement this work. 

def rotation_angles(self):   

  The method of calculating the rotating angles is simple. We find the eigenvectors of 

H(the matrix in Feature detection) corresponding to the larger eigenvalue. As we have 

known, these eigenvectors are the principal axes of the quadratic form. Therefore, we 

can use the orientation of the principal axes to express the rotating angles. 

angle = np.arctan(eigenvectors[1, index] / eigenvectors[0, index])   

After getting the rotating angles of each interest point, we can begin to build the 

MOPS. We also define a function to implement this work. 

def Simp_MOPS(self, angles): 

First, as same as the simple descriptor, we should pad the pictures by zero. This time, 

we pad by 35*35, as the size of the small image we will extract later is 70*70. 

img = np.pad(img, [(35, 35), (35, 35)], mode='constant')   

Next we extract a small image (70*70) around each keypoint to package the original 

MOPS window (40*40) which is inclined. Then we use prefiltering to scale the small 

image (70*70) to 1/5 size (14*14), in the meantime the inclined MOPS window (40*40) 

is scaled to 1/5 size (8*8). 

# Scale to 1/5 size (using prefiltering) 

small_img_filtered = filters.gaussian_filter(small_img, 5) 

small_img_scaling = cv2.resize(small_img_filtered, (0, 0), fx=0.2, fy=0

.2, interpolation=cv2.INTER_CUBIC) 

As we have got the rotating angles of windows around each interest point in the 

function rotation_angles, we can now use these angles to rotate each scaled small 

image (14*14) to inclined, while also rotate each scaled MOPS window (8*8) to 

horizontal. 

# Rotate to horizontal 

rot_mtrx = cv2.getRotationMatrix2D((7, 7), -angle, 1) 
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small_img_scaling_rot = cv2.warpAffine(small_img_scaling, rot_mtrx, sma

ll_img_scaling.shape) 

In the next step, we sample a 8x8 square window centered at the inclined small image 

(14*14) to get the standard sized MOPS window. Ultimately, we normalize the MOPS 

window by subtracting the mean, dividing by the standard deviation in the window. If 

the variance is very close to zero (less than 10-10 in magnitude), we just return an all-

zeros window to avoid a divide by zero error. 

The output of the function Simp_MOPS is a three-dimensional list containing all 8*8 

MOPS windows.  

 

  To summarize the feature description, the main idea of each kind of descriptor is to 

get the pixel intensity around the interest point. The two descriptors we design are 

invariant to translation, 2D rotation and scale. MOPS and Simple descriptor is built 

based on these invariance and well perform in feature description. 

3 Feature Matching 

3.1 SSD 

[1].Principle: 

SSD (sum of square differences) is a matching method that calculates the distance 

between features of two interest points and selects the smallest distance value to match 

the two most similar points. 

Suppose that the feature matrix of some two points of interest on the two pictures is 

shown below: 

 

 

After the SSD values between all feature point pairs are calculated, we select the 

point pairs that produce the smallest SSD values and record their index values. This 
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means that we found the closest feature points in the two images using the SSD method. 

[2].Code 

SSD = []  # Used to store the SSD distance between any two points in fe

ature list 

SSDpairs = []  # Used to store the index values of the two matched elem

ents in the two feature lists 

zerofeature1 = []  # Used to store index values of the elements that al

l values are 0 in the feature list 

nonzeroDes1 = []  # Used to store index value of the elements that not 

all values are 0 

nonzeroDes2 = [] 

zerofeature2 = [] 

Create list format variables, the purpose of which is indicated in the comments. 

 

for i in range(len(self.ft1)): 

if np.all(self.ft1[i] != 0): 

          nonzeroDes1.append(i) 

  else: 

          zerofeature1.append(i) 

for j in range(len(self.ft2)): 

  if np.all(self.ft2[j] != 0): 

           nonzeroDes2.append(j) 

  else: 

           zerofeature2.append(j) 

Obtain the index values of elements whose feature list values are all 0, and operate 

the two feature lists separately. 

 

for x in nonzeroDes1: 

   for y in nonzeroDes2: 

        SSD.append(np.sum((self.ft1[x] - self.ft2[y]) ** 2)) 

Perform SSD operations and add the values to the preset SSDlist. 

 

SSD = np.array(SSD) 

SSD = np.resize(SSD, (len(nonzeroDes1), len(nonzeroDes2)))        

indexMatrix = np.argsort(SSD)  # Get the sort of SSD value size 

for x in range(len(nonzeroDes1)): 

     SSDpairs.append([x, indexMatrix[x][0]]) 

Transform the number of rows and columns of the matrix so that the SSD value 

corresponding to each point of interest can be obtained. 

Use the argsort function to get the sort of SSD values. 
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3.2.Ratiotest 

[1].Principle 

  Ratiotest is an optimization method based on SSD FeatureMatch. It can effectively 

screen out mismatched point pairs. 

 

 

  If the ratio of SSD value of the most matched interest point to SSD value of the 

second matched interest point is close to 1, it indicates that the first matching point is 

too close to the second matching point, which may lead to mismatching. 

  In order to solve this problem, we set a threshold value less than 1 (the threshold 

value in this project is set to 0.2), and the ratio of point pairs higher than the threshold 

value will be discarded, ensuring that the remaining point pairs are highly differentiated 

and improving the identification accuracy. 

[2].Code 

for t in range((len(self.ft1) - len(zerofeature1))): 

    if SSD[t][indexMatrix[t][1]] == 0:  # Determines whether the second

 smallest point of the SSD value is 0 

       ratio[t] = 1 

    else: 

       ratio[t] = SSD[t][indexMatrix[t][0]] / SSD[t][indexMatrix[t][1]] 

When the denominator of ratio is 0, we set ratio to 1 so that we can discard these 

pairs of points with the denominator of 0 by threshold adjustment. 

 

 for m in range(len(SSDpairs)): 

            if ratio[m] <= threshold: 

                ratiopairs.append(SSDpairs[m])  

Elements in ratiopairs are a subset of the number of elements in SSDpairs. 
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4 Performance Analysis 

4.1 Result 

[1] detection result 

Interesting points obtained by Harris corner detection are shown in the figure below: 

  

(a) yosemite1 (b) yosemite2 

The red points in the figure are the feature points. In parameter setting of detection 

function, ratio was set as 0.05 and min as 3. Since ratio is a threshold parameter, points 

larger than the threshold value will be retained and points less than the threshold value 

will be omitted. Therefore, the larger ratio is, the fewer feature points will be left.And 

the parameter min is given by the project requirement. 

  Under this parameter setting, there are 246 feature points in yosemite1 and 487 

feature points in yosemite2. 

 

[2] Matching result： 

 
MOPS+ratio(0.2) 

This picture is a line graph obtained by using the MOPS Descriptor and ratio match 

method, which has the highest AUC value, meaning the highest accuracy. Ratio was set 

to 2, and 53 pairs of feature points were finally matched. 
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MOPS+SSD 

Use the method of combining MOPS Descriptor and SSD matching to get the line 

graph. The SSD algorithm looks for the best match in Yosemite2 for each feature point 

in Yosemite1,so the number of matches is 246. This number is equal to the number of 

feature points in Yosemite1. The AUC value obtained by this combination method is 

significantly lower than the MOPS+ratio. 

 
Simple+ratio(0.2) 

When we keep ratio=0.2 unchanged and use the combination of SSD method and 

Ratio test, the generated line graph is shown above. You can obviously see that there 

are fewer matched points. 

 
Simple+ratio(0.643) 

We change the parameters so that 53 pairs of feature points match. The matching 

accuracy is significantly reduced compared to MOPS+Ratio(0.2) because we can see a 

lot of slanted lines in the figure. One of the reasons is that the simple Descriptor can't 

distinguish the rotation correctly. 
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Simple+SSD 

The AUC value obtained using SSD+Simple Description is smaller than that 

obtained using Ratio+Simple Description. 

 

[3].ROC curve result 

 

ROC curves 

As you can see from the curve comparison, the accuracy of using MOPS Descriptors 

is much higher than that of using simple Descriptors 

[4].AUC comparision 

 AUC 

Simple descriptor MOPS 

SSD 0.734 0.895 

Ratio(0.9) 0.751 0.872 

Ratio(0.8) 0.662 0.839 

From the table, we can see that: 

1. The AUC value of MOPS is generally larger than that of simple Descriptor, whether 

SSD is used or ratio of different thresholds is used. 

2. When the threshold is set to 0.9, the AUC value of MOPS decreases slightly, but 

the AUC value of Simple Descriptor increases. This is because for MOPS, we filter 

out many correctly matched point pairs, resulting in lower accuracy, while for 

Simple Descriptor, after ratio operation, we filter out fewer correct point pairs than 

wrong point pairs, thus increasing the AUC value. This also means that MOPS 
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descriptor has excellent characterizing ability for pixel blocks. 

3. As the threshold continues to rise, the AUC value of both MOPS and Simple 

Descriptor decreases. 

 

4.1 Discussion 

[1]. Compared with Gaussian filter, we attempt to use sobel operator or Scharr operator 

to calculate the partial derivatives in x&y direction, but Gaussian filter achieves ideal 

corner-detection effect in practical application when it’s applied in street scene. 

 

[2]. It can be seen from the results that MOPS characterizes pixel blocks better than 

simple Descriptors, This is also very predictable, because the simple Descriptor cannot 

distinguish between two blocks of pixels after the same graph has been rotated.For 

example: 

 

In the case above, we use the SSD algorithm, and when A is used to match another 

image, the recognition effect of B1 and B2 is the same, while in fact A can only 

correspond to one descriptor. The disadvantages of the simple descriptor are clearly 

Gaussian Filter Sobel Operator Scharr Operator 
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exposed. When we use MOPS, this problem is solved nicely due to the "Angle" part. 

 

[3]: The advantage of ratio over SSD is that we avoid false matches and improve the 

AUC value by setting thresholds to eliminate matches where the first match is too close 

to the second match. 

5 My images  

The following two photos were taken in the school dormitory. 

  

After Harris corner detection, the feature points are shown in the figure. In this case, 

ratio is set to 0.13 in detection Function. The first image has 423 points of interest and 

the second image has 264 points of interest. 

 

After MOPS and Ratio test, the generated line graph is shown as follows: 

 
In Ratiotest, ratio is set to 0.7, and 191 pairs of feature points are matched. The final 

rendering shows that most of the connecting points are the same, and the result is 

roughly accurate. This justifies the algorithm provided above. 
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After the above test, we are going to use two identical images for the test: 

        

 The above two pictures are exactly the same. If we set H matrix as the identity matrix, 

the following results can be obtained: 

   

 We can see that all the points match up correctly, which means that our algorithm is 

successful. ROC curve and AUC value =1 also confirm this conclusion. 
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